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We will assume that the moton of a continuum is described by a differential equation 
in partial derivatives which is dependent on the space coordinate x and time t. If the 
motion is self-similar, then the solution of the equation has the structure t~,(q), where 
~(D) is a function of the dimensionless variable ~ = x/(a:tB), a is a dimensional constant, 
and ~ and ~ are exponents dependent on the initial values, the structure of the differential 

equation, and the boundary and initial conditions. Similarity solutions can be found in 
problems in which the initial data contains a minimal number of quantities with independent 
dimensions. This includes problems on the motion of infinite media not having a character- 
istic linear dimension. This eliminates problems of practical importance in which the 
medium has finite dimensions, the only exception being the special case of self-similar 
motions in which ~ vanishes. We will refer to the similarity solutions corresponding to 
this case as degenerate. Narrowing of the value of ~ to zero imposes additional limitations 
on the initial parameters of the problem. However, this is offset by the possibility of 
obtaining exact solutions when studying dynamic deformations of nonlinearly elastic bodies 
of finite dimensions. This is illustrated in the solution of the problem of the bending 
of beams made of a material for which a power relationship exists between the stresses and 
strains. 

The bending of the beam is described by the differential equation 

02M/Ox~+mO2w/Ot ~ = q. (1)  

Here, w is the deflection; M is the bending moment; m is the linear mass of the beam; q is 
the linear load. The moment M is connected with the curvature 82w/Sx 2 by the power relation 

M=Mo]O~w/Ox2la sign (02w/Ox2), 

where g i s  an a s s i gned  exponen t ;  M0 i s  a d imens iona l  c o n s t a n t .  
tion of system (i)-(2) in the form 

m = M , n ~ ~ 1 6 2  

(2) 
We seek the similarity solu- 

(3) 

(4) 

Here, w*, M*, and b are dimensional constants; ~, ~, 6, nl, n 2, n 3 are exponents and numerical 
multipliers yet to be determined; ~($)and ~($) are dimensionless functions of the variable 
6. 

We are examining two variants of beam loading: with a distributed load 

q ~ q , t ~ !  (~) 

and wi th  a c o n c e n t r a t e d  f o r c e  a p p l i e d  in  t he  s e c t i o n  x = 0, 

(5) 

p = p , t x ,  (6)  

where q* and P* are assigned dimensional quantities; f (~) is a function of the variable 
6; m and X are assigned exponents. Equation (6) makes it possible to write the boundary 
conditions at x = 0 

OM/Ox = O.5P~t ~. (7)  

Considering the dimensions of the quantities, we can express the dimensional coefficients 
in Eqs. (3) and (4) through the assigned quantities. If the load (5) is specified, then 

�9 w ,  = q .m  -a ,b  = (Mom-~q~-a) a/(~+2), M , =  (M,m-"q~")l/(a+n~ (8)  
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while if (6) is given, then 

= ( ~ - I D 2 ( 1 + ~ ) ~ - ( I + 2 ~ > ~ / ( I + 3 ~ )  ~-i_-~i/(i+~) (9) 
w ,  ~ . . o  - ,  ,,o j , b = ( M o P  , ,,~ j , 

M ,  = P , b .  

We insert Eqs. (3-5) into (I), (2), and (7) to obtain equations determining the func- 
tions ~(~) and ~(~). We take Eqs. (8) or (9) into account in making this substitution. 
The transformations made are analogous to those described in [3]. In particular, so that 
the equation is not explicitly dependent on time, the exponents with t are assumed to be 
zero in the substitution. This makes the relations 

a - - 2 - - 5 @ 2 ~ =  O, 9 ( a - - 2 ~ ) - - 5 =  0, ~--5+2~= 0~ (10) 
z - 6 + p = o .  

In the case where the load (5) is given, we use the first three equations of (I0) to deter- 
mine the values of a, 8, and 6. When only (6) is in force, the third equation is excluded 
from (I0). 

The equations which determine the functions ~(~) and ~(~) also include combinations 
of the arbitrary quantities nl, n2, and n 3. They are chosen so as to simplify the values 
of the coefficients of these equations. The choice can be such as to make some of the co- 
efficients equal to unity. In the case bein~ examined, we take n I = [a(a - I)] -l, n 2 = 
[~(~ -i]-~/(2~ + 2), n3 = [~(~ _ i)]-~/(~ ~i). 

We will henceforth use only degenerate solutions, corresponding to $ = 0. With $ = 
0, we finally obtain the following differential equations for the functions ~(~) and $(~) 

~" + r =/(~),  ~ = {~"{~ sign ~". (11) 

Condition (7) gives the relation 

~'(0) = n./(2n.). (12)  

With ~ = 0, Eqs. (10) lead to 

= 2 / ( i  - -  ~ ) ,  6 = 2 ~ / ( 1  - -  ~ ) ,  ~ = 2 ~ / ( t  - -  ~ ) ,  ~ = 2 ~ / ( t  - -  ~ ) .  ( 1 3 )  

The last two equations in these formulas link the coefficient ~ - characterizing the elastic 
properties of the material - and the exponents ~ and h - determining the change in the ex- 
ternal load in the degenerate solution. 

System (ii), describing the degenerate similarity solution, makes it possible to calcu- 
late beams of finite length. In essence, the variable in this system is the linear co- 
ordinate, since the case ~ = 0 corresponds to ~ = x/(bn~). With any fixed value of x (or 
$), we can formulate boundary conditions for the functions ~ or ~ or their derivatives, 
expressed through physical quantities characterizing the bending of beams. The degenerate 
solution will correspond to changes in the mode of bending of the beam over time, the mode 
being determined by the form of the function % 

System (Ii) was used to calculate the bending of simply supported and rigidly fastened 
beams under the influence of a uniformly distributed load (5) (f(~) = i) or a concentrated 
force (6) applied to the center of the beam for different spans and two values of D (I/3 
and 0.i). In accordance with (13), each degenerate value of ~ in the degenerate solution 
corresponds to certain values of ~ or ~, which in turn determine the character of the change 
in load over time. 

When only the force (6) is given, the function f($) in (ii) is set equal to zero. The 
length of the beam is designated by E, while the origin of the coordinates is taken at the 
middle of the beam. Boundary conditions at the origin (g = 0) and at the right support 
(g = $,) can be written for the functions in (ii). When a concentrated force is acting, 
one of the conditions with $ = 0 is determined by Eq. (12). 

Calculations were performed on an "Elektronika-60" computer by the method of reduction 
to a Cauchy problem [4]. In accordance with this method, with ~ = 0, we used two known 
boundary conditions for the functions % ~, and their derivatives and arbitrarily assigned 
two other conditions. We then solved the Cauchy problem. The values of the conditions with 

= 0 were corrected in accordance with the degree of non-closure of the solution at the 
end of the beam (~ = ~.). The process was repeated until the required accuracy was obtained. 

Some of the results are shown in Figs. 1-4 in the form of graphs of ~, ~, ~', ~', ~", 
characterizing the corresponding physical quantities: deflection, bending moment, shearing 
force, angle of the slope the elastic line, and beam curvature. The graphs were constructed in the 
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coordinate C/C* = 2x/s The parameter ~* = s 2) characterizes the relative length of 
the beam. The graphs are shown for one half of the beam. 

Figure i shows the bending of a rigidly fastened beam under a uniformly distributed 
load for p = 1/3 and $, = 2. Figure 2 shows the results for p = 0.I, with all of the other 
parameters retaining their former values. Figure 3 shows results for a simply s,'pported 
beam loaded in the middle of the span by a concentrated force with p = 0.i and $, = 2. It 
is possible to follow the localization of the strains (the increase in curvature ~") at the 
most heavily stressed sites of the beam. This is due to adopted relation (2), according 
to which a small increase in bending moment can correspond to a large increase in strains 
at 0 < p < i. Straight beam sections are seen at sites where the stresses are lower. 

For long, simply supported beams ($, ~ 5) under a uniformly distributed load, the maximum 
of the bending moment is shifted from the center toward the ends of the beam. This is shown 
in Fig. 4 for ~ = 1/3, C, = 5. For long, rigidly fastened beams loaded by a uniformly 
distributed load, the bending moment has its maximum value at the support, while in the 
span the maximum moment is also displaced from the center toward the supports. 

It should be noted that as p approaches zero, the coefficients m and X also vanish, 
in accordance with (13). This case corresponds to the action of an instantaneously applied 
constant load on a beam made of an ideal plastic-rigid material. 

A degenerate solution can be found in the problem of the propagation of longitudinal 
waves. Using the relations presented in [5], it is possible to find a solution for length- 
wise impact against the end of a nonlinearly elastic rod having the other end free or fixed. 
Here, the solution is written in quadratures and is expressed through elliptic integrals. 

l, 

2. 

3. 
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TWO-DIMENSIONAL INVERSE PROBLEM OF NONLINEAR 

ELASTICITY THEORY FOR A HARMONIC MATERIAL 

L. G. Dobordzhginidze UDC 539.3 

For a material of harmonic type [i] we consider a two-dimensional inverse problem of 
nonlinear elasticity theory concerned with the determination of the contour of a hole having 
uniform strength. This problem was solved in [2] in the linear classical case. 

i. Let us assume that the nonlinearly elastic medium under consideration here occupies 
the plane of the variable z = x + iy, weakened by a curvilinear hole. We assume also that 
constant normal stresses are applied to the contour L of this hole [3]: 

an : P0,. Tn = O, (I.i) 

and that there is a biaxial tension along the coordinate axes at infinity: 

0 2 )  = P1, o(y~) = P=. ( 1 . 2  ) 

S u b j e c t  t o  t h e s e  c o n d i t i o n s ,  we w i s h  t o  f i n d  t h e  s h a p e  and  l o c a t i o n  o f  t h e  c o n t o u r  L so  t h a t  
the tangential stress ~t will be constant at all of its points: 

as = a (1.3) 

(o is constant but unknown). 

To solve the problem we make use of complex representations for the stress and deforma- 
tion fields in terms of functions ~(z) and ~(z), analytic in the physical domain S under 
consideration (see [4, 5]): 

~+ 2~ ~.. 
c;x -{- • -}- 4~, = - Y 7  q~g(q)' (1.4) 

% -- ~x -- 2i~v = -- 4 (~ +-__32! n (__q2 a~__* o2! . 
VI q a~ ~ '  

(1.5) 

(A,  ~ a r e  t h e  Lame e l a s t i c  c o n s t a n t s ) .  F o r  l a r g e  l z l  t h e s e  f u n c t i o n s  h a v e  t h e  a s y m p t o t i c s  

qg(Z) = aoZ ~- O(Z-1), I~(Z) = boz ~- O(z -1) ( 1 . 7 )  

(ao~ and  b o a r e  known c o n s t a n t s  [ 6 ] ) ;  

[~+~ 2~(P'+P2)+PIP2+4~" ] I12, (1 8)  
a~ = -6 z (P~ + P2) -- P~P~ + 4~ (~ + ~) 

b~ = 2~ (P, + P2) -- PIPs -~- 4~(I ~- ~)" 
Comparing the relations (1.4), we obtain the equation 

aT* _ ~ - % - -  2 ~  a~* ( 1 9 ) 
Oz % -{- % -}- 4~ az " 

using this, we have, based on relations (1.4)-(1.6), after some calculations, 

Pp. 
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